Julio López
está desaparecido
hace 6402 días
versión para imprimir - envía este articulo por e-mail

Argentina: estudio sobre los efectos nocivos de los agroquímicos en la salud humana
Por Jorge Kaczewer, médico (UBA) - Saturday, Jan. 09, 2010 at 3:12 PM

Buenos Aires, enero 2010. En el estudio “Uso de Agroquímicos en las Fumigaciones Periurbanas y su Efecto Nocivo sobre la Salud Humana”, el médico Jorge Kaczewer, de la Universidad de Buenos Aires, explora las evidencias científicas y adelantos técnicos de los últimos años que revelan cómo se han subestimado hasta ahora los impactos negativos de los plaguicidas en la salud de las personas, como también las insuficiencias de las estrategias y políticas locales de evaluación de toxicidad crónica de plaguicidas autorizados y de uso ilegal. En este trabajo se encuentran aseveraciones tan impactantes como la siguiente: “Hoy podemos afirmar con suma certeza que todo niño en el planeta está expuesto a pesticidas desde la concepción, a lo largo de su gestación y hasta la lactancia sin importar cuál fue su lugar de nacimiento”. Esto, debido a la gran cantidad de agrotóxicos presentes en el ambiente. Entre otros valiosos aportes, Jorge Kaczewer presenta una lista de plaguicidas asociados a la formación de diversos tipos de cánceres e información actualizada sobre la neurotoxicidad de los agroquímicos más usados en Argentina, como 2,4-D, endosulfán, glifosato, cipermetrina y otros piretroides. A continuación, reproducimos la primera parte de este estudio.

Uso de Agroquímicos en las Fumigaciones Periurbanas y su Efecto Nocivo sobre la Salud Humana

Primera Parte

Por Jorge Kaczewer, médico (UBA)

1. INTRODUCCIÓN

En la República Argentina existe una controversia creciente respecto de los efectos tóxicos a largo plazo de la exposición humana a agroquímicos de aplicación periurbana aérea o terrestre. El extensivo problema de la dispersión de los pesticidas en el aire afecta a una diversidad de comunidades a través de todo el país. En respuesta a la solicitud de asesoramiento de integrantes de los Consejos Deliberantes y de ONG’s de diversas localidades del interior de Argentina, el presente trabajo explora recientes evidencias científicas y adelantos técnicos que revelan subestimaciones de impactos sanitarios negativos potenciales e insuficiencias del valor protectivo de estrategias y políticas locales de evaluación de toxicidad crónica de pesticidas autorizados y de uso ilegal. Tanto la revisión de diversos estudios que ya documentaron problemas sanitarios vinculados a este tipo de exposición, como también las alternativas regulatorias y productivas luego sugeridas, intentan promover una actitud precautoria, menos basada en elucubraciones acerca de cuánto daño o riesgo debe afrontar una comunidad en aras del progreso y el crecimiento económico y más en garantizar su efectiva protección frente a poluciones y exposiciones en la interfase agro-urbana.

2. SUBESTIMACIÓN DEL IMPACTO DE LA EXPOSICIÓN A AGROTÓXICOS SOBRE LA SALUD HUMANA.

Sabemos que los agroquímicos producen efectos tóxicos agudos y crónicos.

Los impactos de largo plazo (crónicos) sobre la salud humana pueden resultar tanto a partir de una única exposición a altas dosis de pesticidas, como también de exposiciones a lo largo de un extenso período de tiempo, aunque los niveles de exposición sean bajos. Pese a que la gente no sepa que estuvo expuesta, los problemas consecuentes pueden emerger muchos años luego de una exposición crónica a bajas dosis de pesticidas.

Los adelantos científicos en la investigación de las consecuencias de intoxicaciones crónicas comienzan a brindar un nivel de información hasta hace poco inconcebible, sobre todo respecto a nuestra capacidad de evidenciar la exposición. Los avances en el equipamiento analítico de laboratorio y en los procedimientos de investigación han facilitado la detección de concentraciones muy bajas de pesticidas y sus metabolitos en casi todo tipo de tejido humano. De detectar rutinariamente partes por millón (miligramos por kilogramo) y más recientemente hasta tan poco como partes por trillón (pico gramos por kilogramo), ahora algunos laboratorios pueden medir concentraciones de hasta partes por quintillón (femtogramos por kilogramo). El desarrollo de métodos no invasivos de obtención de muestras, tales como la detección de pesticidas y sus metabolitos en orina, posibilitó el monitoreo de exposición pesticida en infantes y niños. Hoy podemos afirmar con suma certeza que todo niño en el planeta está expuesto a pesticidas desde la concepción, a lo largo de su gestación y hasta la lactancia sin importar cuál fue su lugar de nacimiento.

Por otro lado, la calidad y la cantidad de datos sobre el riesgo planteado a humanos por pesticidas individuales varían considerablemente. A diferencia de obvios defectos neonatales, la mayoría de los efectos sobre el desarrollo no pueden ser objetivados al nacer o aún en posteriores etapas de la vida. Contrariamente, los trastornos cerebrales y del sistema nervioso son expresados en términos de cómo un individuo se comporta y funciona, los cuales pueden variar considerablemente desde el nacimiento y a través de la adultez.

En virtud de la vasta cantidad de pesticidas presentes en el ambiente y de la vasta cantidad de posibles tejidos “blanco” y destinos finales que a menudo difieren dependiendo de la etapa de la vida en que sucede la exposición, se torna evidente la necesidad de abandonar el condicionamiento de toda medida protectiva a la demostración científica de la inocuidad de estas sustancias basada en los criterios de peligrosidad recomendados por la OMS.

Las deficiencias funcionales no son condiciones de tipo “encendido” y “apagado” sino que abarcan un espectro que parte desde lo inconsecuente, pasa por lo muy leve y llega hasta lo muy severo o totalmente debilitante. Consecuentemente, es difícil cuantificar el grado de impacto negativo sobre el neuro-desarrollo. Por ende, nos enfrentamos no sólo a limitaciones en las técnicas de investigación, sino también a la incompletud intrínseca de toda evidencia científica que al establecer criterios para la determinación de inocuidad no incluya estos hallazgos. Por que, de hacerlo, nuestro enfoque regulatorio debería ser mucho más riguroso para proteger la salud humana y ambiental en ausencia de una completa certeza científica.

Ni las estrategias actuales ni las propuestas protegen la salud pública o el medio ambiente. Para ubicar a los plaguicidas en los diferentes rangos de peligrosidad la OMS se basa en la toxicidad del plaguicida, medida a través de la Dosis Letal 50 (DL50). Este parámetro se define como un valor estadístico del número de miligramos del tóxico por kilo de peso, requerido para matar el 50% de una gran población de animales de laboratorio expuestos. Normalmente se expresa con un número, pero en algunos casos puede ser un rango. La DL50 en el caso de los plaguicidas, debe determinarse para las diferentes rutas de exposición (oral, dérmica y respiratoria) y en diferentes especies de animales. Normalmente la DL50 se expresa por vía oral y para ratas (PNUMA, 2000).

La DL50 está relacionada exclusivamente con la toxicidad aguda de los plaguicidas. No mide su toxicidad crónica, es decir aquella que surge de pequeñas exposiciones diarias al plaguicida a través de un largo período. Es decir que un producto con una baja DL50 puede tener graves efectos crónicos por exposición prolongada, como por ejemplo provocar cáncer. Además en la vida real nadie está expuesto a un solo plaguicida sino a varios y esto tampoco lo contempla la DL50. En este caso se deben considerar los efectos aditivos, sinérgicos o antagónicos que ocurren en nuestro organismo al estar expuestos a más de un plaguicida (Albert, 2000).

La DL50 tampoco refleja cabalmente los efectos a corto plazo ya que no da una idea de que porcentaje de la población bajo estudio se sintió mareada o con problemas de coordinación.

En caso de que un plaguicida ocasione daño a órganos vitales, posea efectos acumulativos muy marcados, sea particularmente peligroso o alergénico, la OMS realiza ajustes en su clasificación, ubicándo lo en una categoría que indique mayor peligro. De esta forma la clasificación se basa en la DL50 de los plaguicidas, pero no utiliza exclusivamente este parámetro (PNUMA, 2000).

Cuando el plaguicida tiene una preparación como aerosol o gas fumigante el criterio utilizado para el cálculo de la DL50 es el nivel de concentración en el aire.

CÁNCER

Sabemos que muchos cánceres son causados por mutaciones genéticas múltiples en combinación con daños a partes del sistema inmune, que normalmente destruyen las células cancerosas, y la exposición tanto a ciertos tipos de sustancias tóxicas como a uno o más tipos de virus. Por ejemplo, esta concepción se aplica especialmente para el caso del linfoma. La evidencia reunida durante las últimas dos décadas condujo a sospechar que diversas combinaciones de estos factores intervienen en la génesis del linfoma. Los estudios parecen implicar a un tipo particular de sustancias, los clorofenoles. Los clorofenoles son sustancias con contenido de cloro que incluyen a las dioxinas, los PCB’s, el DDT y los herbicidas “fenoxi”, que incluyen al 2,4-D y el 2,4,5-T. Una reciente revisión de 99 estudios en humanos y uno en mascotas (perros) realizada por la Fundación del Linfoma de EE.UU. (Susan Osburn, RESEARCH REPORT: DO PESTICIDES CAUSE LYMPHOMA? http://www.lymphomahelp.org/docs/research/research report/rr_2000.pdf) constató que 75 de los 99 estudios en humanos indican una conexión entre exposición a pesticidas y linfomas. Y el estudio en perros indicó una doble probabilidad de linfoma luego de exposición al popular herbicida 2,4-D.

Aunque esta información no es suficiente para concluir que la exposición a pesticidas ocasiona cáncer, también sabemos que la ciencia nunca podrá probar más allá de toda duda posible que X ocasiona Y. En lo concerniente a sustancias tóxicas, humanos y ecosistemas, la complejidad es enorme, muchas herramientas importantes de la ciencia aún están en pleno desarrollo y siempre es más lo que no se sabe de lo que sí. Debemos admitir que quizás la ciencia nunca proveerá respuestas definitivas a las preguntas más importantes que nos hacemos. Pero aún así, como individuos y como sociedad humana, nosotros necesitamos respuestas. Al menos, leyendo estos análisis debemos decidir si queremos reducir nuestra exposición a pesticidas y cuestionar el pretendido derecho de los fabricantes de pesticidas a esparcir sus productos por nuestro suelo, agua, aire y alimentos.

Mientras tanto, diversos estudios muy serios detectaron que la exposición a agroquímicos ha sido asociada con el incremento de riesgo de padecer ciertos tipos de cáncer entre granjeros y otros aplicadores de agroquímicos (1-3). También esto ha sido observado entre familias de trabajadores rurales y la población general viviendo en zonas agrícolas (1,2,4–7), pese a que exposiciones específicas no fueron evaluadas en la mayoría de estudios.

(8).Tabla 1. Asociaciones entre distintos agroquímicos y diversos tipos de cáncer

PLAGUICIDA
ÁCIDOS FENOXIACÉTICOS (HERBICIDAS)
2,4-D, MCPA CANCER: Linfoma no-Hodgkin, sarcoma de tejidos blandos, carcinoma de próstata.

PLAGUICIDA
INSECTICIDAS ORGANOCLORADOS CANCER: Leucemia, linfoma no-Hodgkin, sarcoma de tejidos blandos, páncreas, pulmón, mamas.

PLAGUICIDA
INSECTICIDAS ORGANOFOSFORADOS CANCER: Linfoma no-Hodgkin, leucemia.

PLAGUICIDA
INSECTICIDAS ARSENICOSOS CANCER: Pulmón, piel.

PLAGUICIDA
HERBICIDAS TRIAZÍNICOS
CANCER: Ovario.


NEUROTOXICIDAD

Es posible que la exposición crónica a agroquímicos contribuya a la creciente prevalencia en Occidente de trastorno de hiperactividad y déficit atencional, autismo y los problemas del comportamiento y el neuro-desarrollo asociados. Existe una exquisita sensibilidad embrionaria y fetal a cualquier perturbación tiroidea y suficiente evidencia de la exposición humana intrauterina a contaminantes que pueden interferir con la tiroides.

Ya que es posible que jamás podamos vincular la exposición prenatal a una sustancia química específica con daños al proceso de neuro-desarrollo en humanos, deberían explorarse modelos alternativos en los cuales se hallan realizado asociaciones entre la exposición a una sustancia química específica o tipos de sustancias y dificultades en el desarrollo en animales de laboratorio, animales salvajes, y humanos.

DEFINICIÓN DE NEUROTOXICIDAD: La neurotoxicidad es definida como efectos adversos sobre la estructura o el funcionamiento del sistema nervioso central y/o periférico resultantes de la exposición a sustancias químicas. Las sustancias neurotóxicas pueden ocasionar cambios morfológicos que conducen a un daño generalizado en las células nerviosas (neuronopatía), lesión a los axones (axonopatía), o destrucción de las vainas de mielina (mielinopatía). Ya fue sumamente comprobado que la exposición a determinadas sustancias tóxicas de uso agrícola e industrial puede dañar el sistema nervioso, con los consiguientes daños neurológicos y conductuales. Los síntomas de neurotoxicidad incluyen debilidad muscular, pérdida de sensibilidad y control motor, temblores, alteraciones de la cognición y trastornos en el funcionamiento del sistema nervioso autónomo.

El sistema nervioso central (SNC) está compuesto por el cerebro y la médula espinal y es responsable de las funciones superiores del sistema nervioso (reflejos condicionados, aprendizaje, memoria, juicio y otras funciones de la mente). Las sustancias químicas tóxicas para el SNC pueden inducir confusión, fatiga, irritabilidad y otros cambios del comportamiento, así como también enfermedades cerebrales degenerativas (encefalopatía).

El sistema nervioso periférico (SNP) incluye todos los nervios fuera del cerebro o la médula espinal. Estos nervios transportan información sensorial e impulsos motores. El daño a las fibras nerviosas del SNP puede alterar la comunicación entre el SNC y el resto del cuerpo. Las sustancias que afectan al SNP pueden ocasionar síntomas tales como debilidad en los miembros inferiores, parestesias y pérdida de coordinación. La exposición a estos tóxicos también puede desencadenar un amplio espectro de efectos adversos sobre el sistema nervioso. Puede alterar la propagación de los impulsos nerviosos o la actividad de los neurotransmisores y producir una disrrupción en el mantenimiento de las vainas de mielina o la síntesis proteica.

Neurotoxicidad de los pesticidas más utilizados en la República Argentina:

2,4-D
- Síntoma más frecuente de neurotoxicidad: miotonía (los músculos no pueden relajarse luego de su contracción voluntaria).
- Neuropatía periférica: sensaciones inusuales, adormecimiento y dolor en brazos y piernas, trastornos de la marcha. Los síntomas aparecen tardíamente y la recuperación puede ser incompleta. Amplia variabilidad en la susceptibilidad individual a padecer neuropatía.
- Trastornos del comportamiento: cambios en el ritmo diario de actividad relacionados con alteraciones del nivel cerebral del neurotransmisor serotonina y sus metabolitos.
- Neurotoxicidad en niños: reducción del tamaño cerebral, alteraciones de componentes de la membrana neuronal. Exposición infantil a través de la leche materna: menor producción de mielina (componente fundamental de las vainas que recubren las prolongaciones neuronales).
- A altas dosis, daños en la barrera hémato-encefálica, permitiendo que el 2-4-D penetre hacia los tejidos cerebrales.

A lo largo de los últimos 15 años, un equipo de investigación argentino produjo una serie de informes sobre el 2,4-D. Este equipo descubrió que la exposición durante la lactancia al herbicida 2,4-DBE (el ester butílico del 2,4-D) puede alterar la producción cerebral de 5-HT y su metabolito, el ácido 5-hidroxi-indolacético (5-HIAA), en la adultez (9).

Las concentraciones de ambas la dopamina y la serotonina cambiaron transitoriamente si los animales eran expuestos sólo a lo largo del nacimiento (399 /g/kg pc/día desde el sexto día de gestación -GD6- hasta el nacimiento; 15 días) y permanentemente si se administraba a la cría a través de la lactancia materna así como también desde el GD6 hasta el destete (30 días). Duffard et al. (10) y Rosso et al. (2000) (11) hallaron que el 2,4-D interfería con la mielinización en el cerebro como resultado de la exposición lactacional. Esto ocasionó cambios en los patrones de comportamiento que incluyeron la apatía, la reducción de la interacción social, movimientos repetitivos, temblores, e inmovilidad en los bebés expuestos al 2,4-D (13,14). Ellos también descubrieron que los efectos serotoninérgicos y dopaminérgicos ocurrieron durante el desarrollo cerebral postnatal, algo similar a los efectos del CPF. Bortolozzi et al. (14) y Evangelista de Duffard et al. (15) también hallaron 2,4-D en la leche materna de madres alimentadas con 2,4-D y en el contenido estomacal, el cerebro y los riñones de crías de 4 días de vida (Sturtz et al. 2000) (16).

ENDOSULFÁN
La neurotoxicidad del endosulfán es conocida. Bloquea los receptores inhibitorios del sistema nervioso central, es un disrruptor de los canales iónicos y destruye la integridad de las células nerviosas. Sus efectos tóxicos agudos incluyen mareos y vómitos, hiperactividad, temblores, falta de coordinación, convulsiones y pérdida de la conciencia. La exposición crónica puede resultar en daños permanentes del sistema nervioso manifestados como diversas enfermedades neurológicas: parálisis cerebral, epilepsia, retardo mental, cáncer cerebral, etc. Este insecticida también es un disrruptor hormonal, pudiendo generar la exposición materna durante el embarazo y la exposición neonatal e infantil a través de la presencia de endosulfán en leche materna diversos efectos neurológicos de disrrupción endocrina tales como retardo mental y, en etapas ulteriores de la vida, trastornos del comportamiento.

CIPERMETRINA Y OTROS PIRETROIDES SINTETICOS
Son neurotóxicos que actúan sobre los ganglios basales del sistema nervioso central, por medio de la prolongación de la permeabilidad al sodio durante la fase de recuperación del potencial de acción de las neuronas, lo que produce descargas repetidas. Estas descargas pueden a su vez generar en el nervio la liberación del neurotransmisor acetilcolina, lo cual estimula a otros nervios. Algunos de ellos también afectan la permeabilidad de la membrana al cloruro, actuando inhibitoriamente sobre los receptores tipo A del ácido gamma-aminobutírico, hecho que ocasiona excitabilidad y convulsiones.

Adicionalmente, la cipermetrina inhibe en los nervios la incorporación de calcio e inhibe la mono-amino-oxidasa, una enzima que degrada los neurotransmisores. También afecta una enzima ajena al sistema nervioso, la adenosina-trifosfatasa, involucrada en la producción energética celular, el transporte de átomos de metales y la contracción muscular. En todos los casos, el cuadro clínico es similar. Los síntomas de exposición humana incluyen parestesias faciales, mareos, cefaleas, nausea, anorexia, fatiga y pérdida del control vesical. A mayor exposición, los síntomas incluyen contracturas musculares, vértigo, coma y convulsiones.

GLIFOSATO
Pese a que la toxicidad del glifosato no es característicamente neurotrópica, existen antecedentes de efectos adversos neurotóxicos ocasionados por el uso de herbicidas comerciales en base a este herbicida: Luego de un accidente por fumigación en Brasil, un hombre de 54 años de edad padeció un síndrome parkinsoniano cuyos síntomas comenzaron un mes después de la exposición (Barbosa, 2001) Por otro lado, el isobutano, “ingrediente inerte” en las fórmulas comerciales en base a glifosato, presenta una neta neurotoxicidad: Produce una depresión del sistema nervioso.

ATRAZINA
El herbicida atrazina se adosa a zonas del hipotálamo, región cerebral involucrada con la regulación de niveles de hormonas del estrés y sexuales

GLUFOSINATO DE AMONIO
El glufosinato es un herbicida que mata las plantas a través de la inhibición de la actividad de una enzima, la glutamina-sintetasa, involucrada en la desintoxicación de amoníaco y en el metabolismo de los aminoácidos. El glufosinato inhibe la misma enzima en mamíferos y reduce los niveles de glutamina en el hígado, el cerebro y los riñones.
En animales de laboratorio, la exposición a este herbicida es irritante para los ojos y la piel. En ratas, la exposición cutánea incrementó su comportamiento agresivo. Su ingesta en estudios de alimentación produjo, además de diversos impactos nocivos sobre otros sistemas orgánicos, una disminución del peso de la tiroides en perros.

DISRRUPCIÓN ENDOCRINA
A lo largo de las últimas décadas, acumulamos una gran cantidad de evidencias científicas que demuestran que algunas sustancias químicas presentes en los alimentos, el agua y el medioambiente pueden mimetizar a las hormonas y alterar el desarrollo de peces, pájaros y mamíferos, incluyendo su desarrollo sexual. En algunos casos, los efectos sobre la fauna salvaje fueron dramáticos: peces de sexo masculino expuestos al DDT y otros compuestos clorados desarrollaron órganos sexuales femeninos. Sabiendo que los seres humanos y los animales compartimos los mismos mecanismos básicos de crecimiento y desarrollo, cada vez son más los científicos preocupados ante la posibilidad de que los humanos ya puedan estar afectados sin reconocerlo.

El siguiente es un listado de las sustancias químicas consideradas como disrruptores endocrinos:

-DDT y las sustancias producidas por su degradación
-DEHP di(2-etilhexil)ftalato
-Dicofol
-HCB hexaclorobenceno
-Keltano
-Kepona
-Lindano y otros hexaclorociclohexanos similares
-Metoxiclor
-Octacloroestireno
-Piretroides sintéticos
-Herbicidas tipo triazina
-Fungicidas EBDC
-PCB’s y otros congéneres
-2,3,7,8-TCDD y otras dioxinas
-2,3,7,8-TCDF y otros furanos
-Cadmio
-Plomo
-Mercurio
-Tributilestaño y otros compuestos orgánicos de estaño
-Alquilfenoles (detergentes y antioxidantes presentes en poliestireno modificado y PVC
-Estirenos

Productos de soja (isoflavonas)

Productos alimenticios para animales de laboratorio y mascotas

Ya se sabe que todas estas sustancias, la mayoría introducidas en el ambiente como resultado de la actividad humana y otras de origen natural, ejercen efectos nocivos sobre la salud de especies animales. Algunos ejemplos de efectos constatados son: disfunción tiroidea en pájaros y peces; disminución de la fertilidad en pájaros, peces, ostras y mamíferos; apareamiento exitoso reducido en pájaros, peces y tortugas; malformaciones congénitas groseras en pájaros, peces y tortugas; anormalidades metabólicas (perturbación o anormalidad del manejo energético, la producción de tejidos o el manejo de residuos del metabolismo) en pájaros, peces y mamíferos; trastornos del comportamiento en pájaros; demasculinización y feminización en peces, pájaros y mamíferos de sexo masculino; desfeminización y masculinización de peces y pájaros de sexo femenino; y compromiso del sistema inmunitario de pájaros y mamíferos.

El tipo de efecto varía según la especie y la sustancia causal. Sin embargo, se detectaron cuatro patrones generales característicos:

1. Las sustancias en cuestión ejercen sobre el organismo adulto efectos totalmente diferentes a los producidos en el embrión, el feto o el individuo en etapa perinatal.

2. Los efectos se manifiestan mucho más frecuentemente en la descendencia que en el progenitor expuesto.

3. El período en el que el organismo en desarrollo sufre la exposición es crucialmente determinante de las características y el futuro potencial de los efectos.

4. Aunque la exposición crítica ocurra durante el desarrollo embrionario, los efectos pueden no manifestarse sino hasta la madurez del organismo.

Algunos trastornos del desarrollo humano se ven en adultos descendientes de padres expuestos a disrruptores hormonales sintéticos (agonistas y antagonistas) presentes en el medioambiente. Actualmente, las concentraciones de varios agonistas y antagonistas hormonales sintéticos medidas en los tejidos de la población humana de grandes ciudades coinciden con los márgenes de dosis dentro de los cuales se constataron efectos en poblaciones de animales salvajes. Si la carga ambiental de disrruptores endocrinos no es reducida y controlada, ésta puede generar disfunciones a gran escala en la población humana. El espectro y el potencial de daño a la fauna y a la población humana son enormes por la probabilidad de exposición repetida y/o constante a numerosas sustancias químicas disrruptoras. Según los modelos de predicción actuales, los estrógenos y andrógenos tanto exógenos como endógenos pueden alterar el desarrollo de la función cerebral. Cualquier perturbación del sistema endocrino de un organismo en desarrollo puede generarle efectos irreversibles. Por ejemplo, muchas características relacionadas con el sexo son determinadas hormonalmente durante un limitado período de tiempo en las etapas iniciales del desarrollo y pueden ser alteradas por cambios mínimos en el equilibrio hormonal. La evidencia indica que los caracteres ligados al sexo pueden ser irreversibles una vez que han sido fijados. Pero además, existen tres razones por las que todavía estas predicciones están sujetas a una gran incertidumbre: Los efectos de la exposición humana no se comprenden adecuadamente, especialmente los de la exposición de embriones; existen datos sobre problemas reproductivos en la fauna salvaje, pero no información suficiente sobre trastornos del comportamiento; y no se conoce certeramente la potencia de muchas sustancias estrogénicas sintéticas (y todavía existe controversia respecto de la de otras de origen natural) (19).

Tabla I (Modificada de ISTAS 2002 y Olea et al. 2002) (20) Posibles efectos sobre la salud humana de los disrruptores endocrinos:

Mujeres
-Cáncer de mama
-Endometriosis
-Muerte embrionaria y fetal
-Malformaciones en la
descendencia

Hijas
-Pubertad precoz
-Cáncer vaginal
-Mayor incidencia de cánceres.
-Deformaciones en órganos reproductivos.
-Problemas en el desarrollo del sistema nervioso central
-Bajo peso de nacimiento
-Hiperactividad
-Problemas de aprendizaje
-Disminución del coeficiente de inteligencia y de la
comprensión lectora

Hijos
-Criptorquidia o no descenso testicular.
-Hipospadias
-Reducción del recuento
espermático
-Disminución del nivel de testosterona
-Problemas en el desarrollo del sistema nervioso central
-Bajo peso de nacimiento
-Hiperactividad
-Problemas de aprendizaje
-Disminución del coeficiente de inteligencia y de la
comprensión lectora

Hombres
-Cáncer de testículo
-Cáncer de próstata
-Reducción del recuento espermático
-Reducción de calidad del esperma
-Disminución del nivel de testosterona
-Modificación de la
concentración de hormonas tiroideas

Actualmente, alrededor de 900 ingredientes activos registrados como pesticidas en los EE.UU. han sido formulados en 21.000 productos pesticidas, siendo los herbicidas los de mayor uso. Ya se ha comprobado que más del 60% de los herbicidas son disrruptores endocrinos (21). Entre los herbicidas más utilizados que interfieren con el sistema tiroideo está el 2,4-D (ver luego).

Ahora reconocemos que apenas una leve diferencia en la concentración de hormonas tiroideas durante el embarazo puede conducir a cambios significativos en la inteligencia en los niños. En las mujeres embarazadas, las hormonas tiroideas normales circulan ligadas a proteína a partes por billón y como hormona libre a partes por trillón.

En un estudio a largo plazo realizado por Haddow y col. (1999) (22), se demostró que las sustancias químicas que pueden interferir con el sistema tiroideo no tendrían que estar presentes en concentraciones muy altas para afectar el desarrollo intelectual y del comportamiento de embriones y fetos. Su estudio demuestra inesperadamente la frágil relación entre una madre y su descendencia en desarrollo.

Resumidamente, existen sustancias químicas que interfieren con la absorción de ioduro (los herbicidas 2,4-D y man-cozeb) y con la peroxidación a nivel molecular (los herbicidas aminotriazole y tioureas, los insecticidas endosulfán y malatión).

Ciertos antagonistas (los herbicidas aminotriazole y dimetoato, y el insecticida fenvalerato) impiden la liberación de la hormona tiroidea desde la célula e inhiben la conversión de T4 a triiodotironina (T3). Varias sustancias químicas realzan la excesiva excreción de hormonas tiroideas, algunas a través de la activación del sistema citocromo P450: dioxina, hexaclorobenceno y fenvalerato)

Durante los estadios organizacionales de la gestación, las respuestas a la disrrupción endocrina son diferentes a las típicas respuestas en la adultez. Consecuentemente, los estudios de laboratorio con animales maduros no cubren el daño organizacional proveniente de la exposición prenatal. Adicionalmente, la mayoría de estudios toxicológicos tradicionales utilizan dosis de entre 1.000 a 1.000.000 de veces mayores que el rango fisiológico equivalente al cual opera el sistema endocrino y muy superiores a las concentraciones de químicos sintéticos en el mundo real.

Las altas dosis utilizadas en las evaluaciones toxicológicas exceden por lejos las concentraciones umbral o pico a las cuales el control de retroalimentación negativa homeostático del cerebro apaga las respuestas celulares. Consecuentemente, otros efectos tóxicos no endocrinos podrían ser expresados en animales adultos pero no los mismos que ocurrirían si la exposición hubiese ocurrido durante su construcción y programación. Por lo tanto, en la disrupción endocrina, la extrapolación a partir de varias altas dosis para determinar la más baja dosis segura o la dosis de no-efecto de una sustancia química no protegerá el feto. Afortunadamente, muchos protocolos para la detección de disrupción endocrina innovadores y enteramente nuevos se hallan en estadios tempranos de validación y estandarización en docenas de países de todo el mundo, pero desafortunadamente, tendrán que pasar años antes de que muchos estén listos para ser utilizados.

3. DUDAS CRECIENTES ACERCA DEL VALOR PROTECTIVO DE LAS VIGENTES ESTRATEGIAS DE DETERMINACIÓN DE RIESGOS PARA AGROQUÍMICOS.

Es absurdo adentrarnos en el debate sobre la efectividad de la política nacional sanitaria sobre riesgos químicos sin reconocer que todavía ni siquiera se puede controlar e impedir el consumo de fitosanitarios de peligrosidad ya constatada. Pero en innumerables zonas del interior argentino persiste la comercialización de productos cuyo uso está prohibido, severamente restringido o que han sido retirados de la venta. Obviamente, La implementación de medidas fiscalizadoras, preventivas y correctivas de estos delitos no debería recaer sobre la población civil sino que es responsabilidad de las autoridades locales. Sin embargo, la mayoría de denuncias y propuestas terminan siendo el fruto de la participación comunitaria o de heroicos esfuerzos individuales.

Un ejemplo de este caos ecotoxicológico proviene del área rural de tres asentamientos urbanos, Huinca Renancó, en el Sur de la Provincia de Córdoba, y Realicó y Rancul, en el Norte de la Provincia de La Pampa. Una maestra de Huinca Renancó detectó en sus vecinos y alumnos trastornos atribuibles a exposición a múltiples combinaciones de pesticidas y elaboró un informe dirigido a autoridades de su municipio.

Su relevamiento incluyó un listado de los agrotóxicos aplicados en los cultivos cercanos a estas localidades:
Herbicidas: Acetoclor, Aclonifen, Alachlor, Atrazina, Bromoxinil, Brominal, Dicamba, Diflufenicam, Flumetsulam, Flurocioridona, Fluaxifop, Glifosato, Haloxifop-Metil, Metolacloro, Metsulfuron, Nicosulfuron, Picloran, Paraquat, Prometrex, Pictoran + Metsulfurón, Quizalofop, Trifluralina, 2,4D, 2,4DB, 24D y Dicamba, Azetoclor + Prometrina.
Insecticidas: Aficidas, Bacillius Thuringiensis, Clorpirifós, Cipermetrina, Dimetoato, Deltametrina, Endosulfán, Lambdacia, Lotrina, Landacialotrina, Pirimicarb, Clorpirifós + Cipermetrina, Lindano, Carbaryl, Monocrotofós.
Fungicidas: Flutriafol, Mancozeb, Triticonazde, Tebuconazde.

Al confrontar los agroquímicos utilizados en su área de estudio con la “Consolidated List of products whose consumption and/or sale have been banned, withdrawn, severely restricted or not approved by governments”, una lista consolidada de productos cuyo uso está prohibido, severamente restringido o que han sido retirados de la venta emitida anualmente desde 1983 por Naciones Unidas, organismo internacional del cual Argentina es miembro, esta maestra detectó que 12 agroquímicos de la “lista negra” internacional continuaban utilizándose en los alrededores de su ciudad.

Cuando se trata de proteger a nuestra población frente a sustancias de toxicidad altísima y ya conocida, permitir el incumplimiento de leyes es algo inadmisible. Tanto como lo es también la imperante ausencia de rigor científico e irresponsabilidad gubernamental en cuanto a sustancias cuya toxicidad a largo plazo se desconoce.

FUNCIONARIOS CORRUPTOS DETERMINAN LOS RIESGOS

Según un reciente informe emitido por el Institute of Science in Society liderado por la bióloga molecular y genetista Mae-Wan Ho, una de las principales agencias regulatorias del planeta en materia de Salud Pública, la FDA (Food and Drug Administration) de EE.UU., estaría interfiriendo políticamente en el proceso de la ciencia.

Conflictos de interés rampantes en sus paneles de asesores científicos están minando la capacidad de proteger al público del peligro de numerosos medicamentos. Este organismo ya se encuentra en la mira de innumerables críticas por recientes controversias acerca de estudios experimentales de medicamentos sobre niños enfermos de países del Tercer Mundo. Ahora, la Union of Concerned Scientists (UCS, Unión de Científicos Concernidos) ha reavivado el fuego al publicar un censo que desnuda la extendida influencia política sobre la ciencia en la FDA. La UCS envió un cuestionario a 5.918 científicos de la FDA y recibió 997 respuestas. Casi un quinto de los científicos (18,4%)dijo que “les habían pedido por motivos no científicos excluir inapropiadamente, o alterar información técnica o sus conclusiones en documentos científicos en la FDA”.

También la EPA (Agencia de Protección Ambiental) fue puesta bajo fuego recientemente, y justamente respecto del tema que aquí nos ocupa. Aparentemente, el Programa de Pesticidas de la EPA constituiría un verdadero “grupo de tareas” del “Lobby Pesticida”: una cantidad sorprendente de funcionarios directivos de este Programa han pasado a ayudar a fabricantes de pesticidas tóxicos a eludir y demorar los esfuerzos de la EPA por proteger la salud pública. La institución denunciante fue Environmental Working Group (Grupo de Trabajo Ambiental), un equipo de científicos, ingenieros, expertos en política regulatoria, abogados y programadores de computación quienes, desde 1993 y con base en Washington DC, EE.UU., se dedican a estudiar detenidamente información gubernamental, documentos legales, estudios científicos y evaluaciones de laboratorio propias con los propósitos de denunciar amenazas para la salud pública y el medioambiente y de hallar soluciones.

Algunos años atrás, el EWG condujo un análisis del origen de los ingresos de los reglamentadores en materia de pesticidas de mayor rango en la EPA y constató que, desde que comenzara el Programa de Pesticidas de este organismo gubernamental, dos tercios de ellos recibían entonces al menos parte de su sueldo de entidades de la industria agroquímica. Esto incluía a cuatro de seis anteriores Administradores Asistentes para Pesticidas y Sustancias Tóxicas desde 1977, y dos de cuatro anteriores directores de la Oficina de Programas de Pesticidas desde 1983. El EWG también le siguió el rastro a una docena de ex-integrantes de la EPA que ocupaban importantes puestos en la evaluación de riesgos pesticidas. Todos habían continuado sus carreras en el sector privado representando intereses en abierta lucha contra las acciones de la EPA para proteger la salud pública o el medioambiente.

Esta investigación culminó en la denuncia en diciembre de 2004 que objetó el nombramiento de dos científicos para integrar el panel asesor de la EPA para la evaluación de riesgo del ácido perfluorooctanoico en virtud de estar “subsidiados por la industria”. Pese al hecho de que entre los aspirantes al cargo había 99 científicos financiados por la industria, EWG señaló a estos dos por su previo o actual vínculo laboral con DuPont o 3M, empresas que tenían un interés directo en el resultado de la deliberación del comité.

Nota: Ver documento completo en Base de Datos de RAP-AL, en Información por País/ Argentina.

Noticia Fuente:
http://www.rap-al.org/index.php?seccion=8&f=news_view.php&id=343

agrega un comentario


asesinos
Por yo mismx - Sunday, Jan. 10, 2010 at 9:29 PM

yyy todos en indymedia hablan del pago de la deuda ................................................................................................................................................................
q es el dinero??????????????????????????
vida no es.

agrega un comentario